Density Gradient Stabilization of Electron Temperature Gradient Driven Turbulence in a Spherical Tokamak
نویسندگان
چکیده
منابع مشابه
Electron temperature gradient driven turbulence*
Collisionless electron-temperature-gradient-driven ~ETG! turbulence in toroidal geometry is studied via nonlinear numerical simulations. To this aim, two massively parallel, fully gyrokinetic Vlasov codes are used, both including electromagnetic effects. Somewhat surprisingly, and unlike in the analogous case of ion-temperature-gradient-driven ~ITG! turbulence, we find that the turbulent electr...
متن کاملElectron temperature gradient turbulence.
The first toroidal, gyrokinetic, electromagnetic simulations of small scale plasma turbulence are presented. The turbulence considered is driven by gradients in the electron temperature. It is found that electron temperature gradient (ETG) turbulence can induce experimentally relevant thermal losses in magnetic confinement fusion devices. For typical tokamak parameters, the transport is essenti...
متن کاملImpurity transport driven by ion temperature gradient turbulence in tokamak plasmas
Impurity transport driven by electrostatic turbulence is analyzed in weaklycollisional tokamak plasmas using a semi-analytical model based on a boundary-layer solution of the gyrokinetic equation. Analytical expressions for the perturbed density responses are derived and used to determine the stability boundaries and the quasilinear particle fluxes. For moderate impurity charge number Z, the st...
متن کاملShort wavelength temperature gradient driven modes in tokamak plasmas.
New unstable temperature gradient driven modes in an inhomogeneous tokamak plasma are identified. These modes represent temperature gradient (ion and electron) driven modes destabilized in the short wavelength regions with k( perpendicular )rho(i,e)>>1, respectively. The instability occurs due to a specific plasma response that significantly deviates from Boltzmann distribution in the regions k...
متن کاملRole of nonlinear toroidal coupling in electron temperature gradient turbulence
Global gyrokinetic particle simulation and nonlinear gyrokinetic theory find that electron temperature gradient sETGd instability saturates via nonlinear toroidal coupling, which is a nonlocal interaction in the wave vector space that transfers energy successively from unstable modes to damped modes preferentially with lower toroidal mode numbers. The electrostatic ETG turbulence is dominated b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2011
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.106.165005